A hyperactive transposase of the maize transposable element activator (Ac).
نویسندگان
چکیده
Activator/Dissociation (Ac/Ds) transposable elements from maize are widely used as insertional mutagenesis and gene isolation tools in plants and more recently also in medaka and zebrafish. They are particularly valuable for plant species that are transformation-recalcitrant and have long generation cycles or large genomes with low gene densities. Ac/Ds transposition frequencies vary widely, however, and in some species they are too low for large-scale mutagenesis. We discovered a hyperactive Ac transposase derivative, AcTPase(4x), that catalyzes in the yeast Saccharomyces cerevisiae 100-fold more frequent Ds excisions than the wild-type transposase, whereas the reintegration frequency of excised Ds elements is unchanged (57%). Comparable to the wild-type transposase in plants, AcTPase(4x) catalyzes Ds insertion preferentially into coding regions and to genetically linked sites, but the mutant protein apparently has lost the weak bias of the wild-type protein for insertion sites with elevated guanine-cytosine content and nonrandom protein-DNA twist. AcTPase(4x) exhibits hyperactivity also in Arabidopsis thaliana where it effects a more than sixfold increase in Ds excision relative to wild-type AcTPase and thus may be useful to facilitate Ac/Ds-based insertion mutagenesis approaches.
منابع مشابه
Maize Transposable Elements Ac/Ds as Insertion Mutagenesis Tools in Candida albicans
In nonmodel systems, genetic research is often limited by the lack of techniques for the generation and identification of gene mutations. One approach to overcome this bottleneck is the application of transposons for gene tagging. We have established a two-element transposon tagging system, based on the transposable elements Activator (Ac)/Dissociation (Ds) from maize, for in vivo insertion mut...
متن کاملFrequency and Pattem Ds in Transgenic Riceof Transposition Plants of the Maize Transposable Element
Two kinds of T-DNA constructs, I-RSIdAc-I-RS and HmRDs, carrying a non-autonomous transposable element of Ac of maize were introduced into rice plants by Agrobacterium-mediated gene transfer. Six transgenic rice plants identified as containing a single copy of the element were crossed with two transgenic rice plallts carrying a gene for Ac transposase under the control of the cauliflower mosaic...
متن کاملFusion of the transposase with a classical nuclear localization signal to increase the transposition efficiency of Ac transposon
A new strategy was applied to improve the transposition efficiency of the maize transposon Activator (Ac) in heterologous plants. The Ac transposase was fused with a classical nuclear localization signal (NLS) of SV40 to promote the transport of transposase into a nucleus. Base on this, two NLS-TPase constructs were yielded, one containing the full length transposase gene (termed as SV40TPase),...
متن کاملThe activator/dissociation transposable elements comprise a two-component gene regulatory switch that controls endogenous gene expression in maize.
The maize Activator/Dissociation (Ac/Ds) elements are able to replicate and transpose throughout the maize genome. Both elements preferentially insert into gene-rich regions altering the maize genome by creating unstable insertion alleles, stable derivative or excision alleles, or by altering the spatial or temporal regulation of gene expression. Here, we characterize an Ac insertion in the 5'-...
متن کاملThe transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines.
Tag1 was identified as a highly active endogenous transposable element in transgenic Arabidopsis thaliana Landsberg erecta plants carrying the maize transposable element Activator (Ac). Here, we describe experiments designed to determine the basis for the high activity of Tag1. The frequency of transposition of Tag1 elements was compared in lines containing or lacking Ac transposase to assess t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 191 3 شماره
صفحات -
تاریخ انتشار 2012